The Chemistry of Hydrazides. X. The Reduction of Cyclic and Acyclic Hydrazides with Diborane

Henry Feuer and Frank Brown, Jr.
Department of Chemistry, Purdue Universily, Lafayette, Indiana 47907

Received April 29, 1969

Abstract

1,2-Dialkyl- and 1,2-diarylperhydropyridazine-3,6-diones (1) are reduced in high yield to the corresponding 1,2-dialkylu and 1,2 -diarylperhydropyridazines (2) on treatment with diborane at 65°. Half-reduced 1,2 -di-alkylperhydropyridazin-3-ones ($\mathbf{3 a - 3 d}$) in addition to the fully reduced compounds $2 \mathrm{a}-2 \mathrm{~d}$ are obtained if reactions are performed at 25°. At higher diborane concentrations (10 equiv) at 65°, compounds la-1f undergo reduction of the carbonyl groups and cleavage of the $\mathrm{N}-\mathrm{N}$ bond to give the corresponding $\mathrm{N}, \mathrm{N}^{\prime}$-disubstituted 1,4 -butanediamines. Temperatures of $129-135^{\circ}$ are required to effect reduction of 1,2 -diacylhydrazines to the corresponding 1,2 -dialkylhydrazines with diborane. On the other hand, the reduction of 1,2 -diacyl-1,2-dialkylhydrazines to the corresponding tetraalkylhydrazines requires only a temperature of 65°.

1,2-Disubstituted Perhydropyridazine-3,6-diones.Recently we presented a new synthesis of 1,2-dialkyland 1,2-diarylperhydropyridazine-3,6-diones. ${ }^{2}$

We are now reporting on the reduction of these systems to the corresponding perhydropyridazines (eq 1).

A survey of the literature revealed that Stetter and Spangenberger ${ }^{2}$ reduced 1,2-succinylpyrazolidine and 1,2-succinylpiperidazine to the corresponding cyclic hydrazines in good yield with lithium aluminum hydride. By using the same reagent, E. Hedaya, et al., ${ }^{3}$ converted $1,4,6,9$-tetraketo [1,2-a]pyridazine into perhydropyridazo $[1,2-a]$ pyridazine in 10% yield.

The reduction of 1,2-dialkylperhydropyridazine-3,6diones 1a-1d and 1,2-diarylperhydropyridazine-3,6diones 1 e and 1 f at 65° with a slight excess of borane (5 equiv) in tetrahydrofuran (THF) followed by acidic or basic hydrolysis of the reaction mixture gave the corresponding perhydropyridazines $2 \mathrm{a}-2 \mathrm{f}$ in high yield.

When reactions were carried out at 25° while employing 5 equiv of borane, the reductions of compounds $1 \mathrm{a}-1 \mathrm{~d}$ were incomplete, because in addition to $2 \mathrm{a}-2 \mathrm{~d}$ there were also obtained the corresponding halfreduced 1,2-dialkylperhydropyridazin-3-ones, 3a-3d (eq 1).

On the other hand, only compounds $2 e$ and $2 f$ were obtained when 1 e and 1 f were treated with borane under similar conditions.

The structure of 3 was indicated by physical data and by the fact that 3 b was readily converted into 2 b in 79% yield on treatment with borane in THF at 25°.

When compounds 1a-lf were treated with a large excess of borane (10 equiv) in refluxing THF, not only

[^0]
reduction of both carbonyl groups, but also cleavage of the $\mathrm{N}-\mathrm{N}$ bond occurred with the formation of $\mathrm{N}^{-} \mathrm{N}^{\prime}$ disubstituted 1,4-diaminobutanes, $4 \mathrm{a}-4 \mathrm{f}$ (eq 2). It is very likely that the formation of 4 occurred via 2 , for $2 b$ was converted in 65% yield into 4 b under similar reaction conditions.
The reduction of the parent compound perhydro-pyridazine- 3,6 -dione ($\mathbf{1 g}$) with 12 equiv of borane at 65° gave perhydropyridazine ($2 \mathbf{g}$) in 52% yield as the only compound. No product resulting from the cleavage of the $\mathrm{N}-\mathrm{N}$ bond was obtained.
1,2-Diacylhydrazines.-The successful reduction of compounds 1 to 3 with diborane prompted us to investigate the reaction with 1,2 -diacylhydrazines. If successful, it would provide a convenient one-step preparation of 1,2-dialkylhydrazines.

Hinman ${ }^{4}$ reported that 1,2-diacetylhydrazine was reduced with lithium aluminum hydride to 1,2 -diethylhydrazine in 26% yield, but that under similar reaction conditions 1,2-dibenzoylhydrazine (4) was recovered unchanged.

In this study it was found that reaction temperatures of $129-135^{\circ}$ were required to achieve reduction of 1,2-dipropionylhydrazine and 1,2-dibutyrylhydrazine to the corresponding 1,2-dipropylhydrazine (5) and 1,2-dibutylhydrazine (6) in yields of 65 and 49%, respectively.

In the cases of compound 4 and 1,2-dicyclohexanoylhydrazine, the reaction led to the half-reduced products, 1-benzoyl-2-benzylhydrazine (7) and 1-cyclohexanoyl2 -cyclohexylmethylhydrazine (8), respectively. Subsequent treatment of 8 with diborane gave the fully reduced 1,2-dicyclohexylmethylhydrazine (9) and some cyclohexylmethylamine. Compound 7 also underwent reduction but gave rise to a mixture which could not be separated.

1,2-Diacyl-1,2-dialkylhydrazines.-As in the case of 1, reduction of 1,2-diacyl-1,2-dialkylhydrazines with diborane occurred already at 65° and led to tetraalkylhydrazines in good yield. Small amounts of halfreduced compounds were also obtained. For instance, in the reduction of 1,2-dipropionyl-1,2-dimethylhydrazine, there was obtained, in addition to 82% 1,2-di-propyl-1,2-dimethylhydrazine (10), 14\% 1-propionyl-2-propyl-1,2-dimethylhydrazine (11). 1,2-Dibenzoyl-
(4) R. L. Hinman, ibid., 78, 1645 (1956).

1,2-dimethylhydrazine (12) gave 60% 1,2-dibenzyl-1,2dimethylhydrazine (13) and $28 \% \mathrm{~N}$-methylbenzylamine, the latter apparently arising from cleavage of the $N-N$ bond. It is of interest that in the reduction of 12 with lithium aluminum hydride cleavage of the $\mathrm{N}-\mathrm{C}=\mathrm{O}$ rather than the $\mathrm{N}-\mathrm{N}$ bond occurred for, in addition to 13, there were isolated 1-benzoyl-1,2-dimethylhydrazine and benzyl alcohol. ${ }^{4}$

Experimental Section

Apparatus.-All diborane reductions were performed in a three-neck flask equipped with a magnetic stirrer, thermometer, reflux condenser, and septum stopple or gas dispersion tube, depending on the method of introducing diborane. Hydrogen evolution was measured by attaching a series of burets through a Dry Ice trap to the outlet of the condenser.
Reagents.-Diborane was generated as described by Brown ${ }^{5}$ and solutions of borane in THF were prepared and standardized.
1,2-Disubstituted perhydropyridazine-3,6-diones were prepared by the procedure of Feuer, et al. ${ }^{1}$ 1,2-Diacyl- and 1,2diaroylhydrazines were prepared by methods described in the literature. Tetrahydrofuran (THF) was purified by the method of Feuer and Savides. ${ }^{6}$ Dimethyl ether of diethylene glycol (Diglyme) was purified by vacuum distillation from KiAlH_{4}.

Equipment.-Infrared spectra were taken with a PerkinElmer recording spectrophotometer, Models 21 and 421. Nuclear magnetic resonance spectra were determined on a Varian Model A-60 analytical nmr spectrometer using tetramethylsilane as an internal standard. Gas chromatographic analyses were performed on Aerographs A-700 and A-903 using SF-96 on Chromosorb W columns.

1,2-Diisopropylperhydropyridazine. A. From 1,2-Diisopropyl-perhydropyridazine-3, 6 -dione (1 b).-The following experiment is typical of the procedure employed for preparing 1,2 -dialkylperhydropyridazines. To 3.96 g (20.0 mmol) of 1,2 -diisopropyl-perhydropyridazine- 3,6 -dione in 100 ml of THF at 0° was introduced by means of a syringe 8.3 ml of 12 N borane in THF (99.6 mmol of hydride) at such a rate that the temperature did not exceed 5°. The mixture was stirred at $0-5^{\circ}$ for 1 hr , allowed to attain room temperature, and refluxed for 24 hr . This operation yielded 5.04 mmol of hydrogen at STP. Recooling the reaction mixture to $0-5^{\circ}$, adding dropwise 20 ml of 20% potassium hydroxide, and refluxing for 1 hr gave an additional 13.21 mmol of hydrogen at STP. Thus a total of 81.4 mmol of hydride was consumed (theory requires 80.0 mmol of hydride).
Extracting the reaction mixture with ether, drying the extract (MgSO_{4}), removing ether, and distilling the residue in vacuo gave $2.90 \mathrm{~g}(8.5 \%)$ of 1,2 -diisopropylperhydropyridazine (2 b): bp $33^{\circ}(0.2 \mathrm{~mm}) ; n^{20} \mathrm{D}$ 1.4581; ir (neat) $2976 \mathrm{~cm}^{-1}(\mathrm{C}-\mathrm{H}) ; \mathrm{nmr}$ $\left(\mathrm{CCl}_{4}\right) 0.98\left[\mathrm{~d}, 12, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right], 3.1\left[\mathrm{~m}, 2, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right], 2.8(\mathrm{~m}$, $4, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}$), and 1.45 ppm ($\mathrm{m}, 4, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}-$ $\mathrm{CH}_{2} \mathrm{~N}$).
Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{22} \mathrm{~N}_{2}$: C, 70.53; H, 13.02; N, 16.45. Found: C, 70.28; H, 12.80; N, 16.30 .

When the reaction was carried out at 25° for 24 hr , from 1.98 g (10.0 mmol) of 1 b and 4.4 ml of 12 N borane in THF (52.8 mmol of hydride) there was obtained 1.28 g of liquid, bp $28-68^{\circ}(0.1$ mm). Glpe analysis at 180° and $90 \mathrm{ml} / \mathrm{min}$ He indicated the presence of two compounds in addition to starting material (6%).
One compound (retention time 8 min) was identified as 2 b ($7 . \%$) , $n^{20}{ }^{20} 1.4583$.
The second product (retention time 16 min) was 1,2 -diiso-propylperhydropyridazin-3-one (3b, 8\%): $n^{21} \mathrm{D}$ 1.4754; ir (neat) $2976(\mathrm{CH})$ and $1660 \mathrm{~cm}^{-1}(\mathrm{C}=0) ; \mathrm{nmr}\left(\mathrm{CCl}_{4}\right) 1.1$ [d, 6 , $\left.\mathrm{CH}_{2} \mathrm{NCH}\left(\mathrm{C}_{3}\right) \mathrm{H}_{2}\right], 1.2\left[\mathrm{~d}, 6, \mathrm{O}=\mathrm{CNCH}\left(\mathrm{CH}_{3}\right)_{2}\right], 1.5(\mathrm{~m}, 2$, $\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{C}=0$), and $4.0 \mathrm{ppm}\left[\mathrm{m}, 2, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right]$.

Anal. Caled for $\mathrm{C}_{10} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}: \mathrm{C}, 65.17 ; \mathrm{H}, 10.94 ; \mathrm{N}, 15.20$. Found: C, 65.10; H, 11.06; N, 15.38.
B. From 1,2-Diisopropylperhydropyridazin-3-one (3b).-The procedure was similar to that employed in part A. From 0.18 g (0.98 mmol) of 3 b in 10 ml of THF and 1.0 ml of 4.4 N borane in THF (4.4 mmol of hydride), there was obtained $0.13 \mathrm{~g}(79 \%)$ of 2b, bp $33^{\circ}(0.2 \mathrm{~mm}), n^{20} \mathrm{D}$ 1.4.584. 1,2-Dipropylperhydropyrida-

[^1]zine ($2 \mathrm{a}, 82 \%$) was prepared as above: $\mathrm{bp} 33^{\circ}(0.2 \mathrm{~mm}) ; n^{20} \mathrm{D}$ $1.4578 ; \operatorname{nmr}\left(\mathrm{CCl}_{4}\right) 0.88\left[\mathrm{t}, 6,\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CH}_{3}\right], 1.42\left(\mathrm{~m}, 4, \mathrm{CH}_{2} \mathrm{CH}_{9}-\right.$ CH_{3}), 2.6 ($\mathrm{t}, 4, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$), $1.5\left[\mathrm{~m}, 4, \mathrm{NCH}_{2}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CH}_{2} \mathrm{~N}\right]$, and $2.8 \mathrm{ppm}\left[\mathrm{m}, 4, \mathrm{NCH}_{2}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CH}_{2} \mathrm{~N}\right]$.
Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{22} \mathrm{~N}_{2}$: $\mathrm{C}, 70.50 ; \mathrm{H}, 12.94 ; \mathrm{N}, 16.47$. Found: C, 70.45; H, 12.99; N, 16.56 .

1,2-Dipropylperhydropyridazin-3-one ($3 \mathrm{a}, 8 \%$) was prepared as above: bp $60-65^{\circ}(0.2 \mathrm{~mm})$; $n^{20} \mathrm{D} 1.4713 ; \mathrm{nmr}\left(\mathrm{CCl}_{4}\right) 1.0$ $\left[\mathrm{t}, 6,\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CH}_{3}\right], 1.45\left(\mathrm{~m}, 4, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.5\left(\mathrm{~m}, 2, \mathrm{NCH}_{2}-\right.$ $\left.\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{C}=0\right), 2.3\left(\mathrm{t}, 2, \mathrm{CH}_{2} \mathrm{C}=0\right)$, and $3.0 \mathrm{ppm}\left(\mathrm{t}, 6, \mathrm{NCH}_{2}\right)$.
Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}: \mathrm{C}, 65.17 ; \mathrm{H}, 10.94 ; \mathrm{N}, 15.20$. Found: C, 65.13; H, 11.03; N, 14.92.
1,2-Di(sec-butyl)perhydropyridazine (2c, 81%) was prepared as above: bp $44-46^{\circ}(0.15 \mathrm{~mm})$; n^{20} D $1.4671 ; \mathrm{nmr}\left(\mathrm{CCl}_{4}\right)$ $0.82\left(\mathrm{t}, 6, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.0\left(\mathrm{~d}, 6, \mathrm{CHCH}_{3}\right), 1.42\left(\mathrm{~m}, 4, \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$, $1.5\left[\mathrm{~m}, 4, \mathrm{NCH}_{2}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CH}_{2} \mathrm{~N}\right], 2.8\left[\mathrm{t}, 4, \mathrm{NCH}_{2}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CH}_{2} \mathrm{~N}\right]$, and $3.0 \mathrm{ppm}\left[\mathrm{m}, 2, \mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{C}_{2} \mathrm{H}_{5}\right]$.
Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{28} \mathrm{~N}_{2}$: $\mathrm{C}, 72.66 ; \mathrm{H}, 13.21 ; \mathrm{N}, 14.12$. Found: C, 72.51; H, 13.03; N, 14.01 .
1,2-Di(sec-butyl)perhydropyridazin-3-one (3c, 15%) was prepared as above: $n^{20} \mathrm{D} 1.4808 ; \mathrm{nmr}\left(\mathrm{CCl}_{4}\right) 0.89\left(\mathrm{t}, 6, \mathrm{CH}_{2} \mathrm{CH}_{8}\right)$, $1.05\left(\mathrm{~d}, 3, \mathrm{CHCH}_{3}\right), 1.18\left(\mathrm{~d}, 3, \mathrm{O}=\mathrm{CNCHCH}_{3}\right), 1.5[\mathrm{~m}, 4$, $\mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2} \mathrm{CH}_{3}$], $1.6\left(\mathrm{~m}, 2, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{C}=\mathrm{O}\right), 2.2(\mathrm{~m}, 2$, $\left.\mathrm{CH}_{2} \mathrm{C}=0\right), 3.05\left(\mathrm{t}, 4, \mathrm{NCH}_{2}\right), 3.1(\mathrm{~m}, 1, \mathrm{CH})$, and 3.75 ppm ($\mathrm{m}, 1, \mathrm{CH}$).
Anal. Caled for $\mathrm{C}_{12} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}: \mathrm{C}, 67.88 ; \mathrm{H}, 11.39 ; \mathrm{N}, 13.19$. Found: C, 67.36; H, 11.32 ; N, 13.05
1,2-Dibutylperhydropyridazine ($2 \mathrm{~d}, 74 \%$) was prepared as above: bp $41-44^{\circ}(0.2 \mathrm{~mm}) ; n^{20_{\mathrm{D}}} 1.4620 ; \mathrm{nmr}\left(\mathrm{CCl}_{4}\right) 0.90$ ($\mathrm{t}, 6, \mathrm{CH}_{3}$), $1.4\left(\mathrm{~m}, 12, \mathrm{CH}_{2}\right), 2.6\left[\mathrm{t}, 4, \mathrm{NCH}_{2}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CH}_{3}\right]$, and $2.7 \mathrm{ppm}\left[\mathrm{t}, 4, \mathrm{NCH}_{2}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CH}_{2} \mathrm{~N}\right]$.

Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{26} \mathrm{~N}_{2}$: $\mathrm{C}, 72.66 ; \mathrm{H}, 13.21 ; \mathrm{N}, 14.12$. Found: C, 72.64 ; H, 13.39 ; N, 13.89 .
1,2-Dibutylperhydropyridazin-3-one (3d, 15%) was prepared as above: $n^{20} \mathrm{D}$ 1.4734; $\mathrm{nmr}\left(\mathrm{CCl}_{4}\right) 0.93\left(\mathrm{t}, 6, \mathrm{CH}_{3}\right), 1.4(\mathrm{~m}, 10$, $\left.\mathrm{CH}_{2}\right), 2.2\left(\mathrm{~m}, 2, \mathrm{CH}_{2} \mathrm{C}=0\right)$, and $3.0 \mathrm{ppm}\left(\mathrm{m}, 6, \mathrm{NCH}_{2}\right)$.
Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}: \mathrm{C}, 67.88 ; \mathrm{H}, 11.30 ; \mathrm{N}, 13.19$. Found: C, 67.64; H, 11.51; N, 13.24 .
Perhydropyridazine ($2 \mathrm{~g}, 52 \%$) was prepared as above: bp $52^{\circ}(18 \mathrm{~mm}) ; n^{20} \mathrm{D} 1.4858$ [lit. $\left.{ }^{7,8} \mathrm{bp} 54^{\circ}(12 \mathrm{~mm}) ; n^{17 \mathrm{D}} 1.4862\right]$; ir (neat) $3300(\mathrm{NH})$ and $2924 \mathrm{~cm}^{-1}(\mathrm{CH})$; nmr (CCl_{4}) 1.58 [m, 4, $\left.\mathrm{NCH}_{2}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CH}_{2} \mathrm{~N}\right], 2.89\left(\mathrm{~m}, 4, \mathrm{NCH}_{2}\right)$, and $3.2 \mathrm{ppm}(\mathrm{m}$, 2, NH).

1,2-Di(o-tolyl)perhydropyridazine (2f, 70\%) was prepared as above: $\mathrm{mp}{ }^{61-62^{\circ}}$; $\mathrm{nmr}\left(\mathrm{CCl}_{4}\right) 1.77$ [t, $4, \mathrm{NCH}_{2}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CH}_{2} \mathrm{~N}$], $2.35\left(\mathrm{~s}, 6, \mathrm{CH}_{8}\right), 3.2\left(\mathrm{~m}, 4, \mathrm{NCH}_{2}\right)$, and $7.0 \mathrm{ppm}(\mathrm{m}, 8$, aromatic H).

Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{~N}_{2}: \mathrm{C}, 81.16 ; \mathrm{H}, 8.33 ; \mathrm{N}, 10.52$. Found: C, 81.12; H, 8.13; N, 10.44 .

N, N^{\prime}-Diisopropyl-1,4-diaminobutane. A. From 1,2-Diiso-propylperhydropyridazine- 3,6 -dione.-The following experiment is typical of the procedure employed for preparing $\mathrm{N}, \mathrm{N}^{\prime}$-disubstituted 1,4 -diaminobutanes. To $3.96 \mathrm{~g}(20.0 \mathrm{mmol})$ of $1,2-$ diisopropylperhydropyridazine- 3,6 -dione in 100 ml of THF at 0° was added 32.5 ml of 6.4 N borane in THF (208 mmol of hydride). The reaction mixture was stirred at $0-5^{\circ}$ for 1 hr and then refluxed for 24 hr . Adding dropwise 30 ml of 10% hydrochloric acid ${ }^{8}$ to the reaction mixture at $0-5^{0}$, removing THF by distillation, refluxing the aqueous residue for 1 hr , basifying with solid sodium hydroxide, extracting the emulsion with ether, drying the extract (MgSO_{4}), removing ether, and distilling the residue gave $2.66 \mathrm{~g}(77 \%)$ of $\mathbf{N}, \mathrm{N}^{\prime}$-diisopropyl-1,4-diaminobutane: $\mathrm{bp} 4 \mathrm{n}^{\circ}$ (0.03 mm) (lit. ${ }^{10} \mathrm{bp} 208.5-218^{\circ}$); $n^{20} \mathrm{D} 1.4418$; ir (neat) $3285(\mathrm{NH})$ and $2975 \mathrm{~cm}^{-1}(\mathrm{CH})$; $\mathrm{nmr}\left(\mathrm{CCl}_{4}\right) 0.63(\mathrm{~s}, 2, \mathrm{NH})$, and $0.96 \mathrm{ppm}\left[\mathrm{d}, 12, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right]$.
The dipicrate salt, $\mathrm{mp} 189-190^{\circ}$ (lit. ${ }^{11} \mathrm{mp} 189.0-190^{\circ}$), was prepared by the usual method. ${ }^{12}$

[^2]B. From 1,2-Diisopropylperhydropyridazine.-The procedure was similar to that employed in part A. From $3.40 \mathrm{~g}(20.0 \mathrm{mmol})$ of 1,2-diisopropylperhydropyridazine, 60 ml of THF , and 10 ml of $12.1 N$ borane in THF (121 mmol of hydride), there was obtained $2.23 \mathrm{~g}(65 \%)$ of $\mathrm{N}, \mathrm{N}^{\prime}$-diisopropyl-1,4-diaminobutane, bp $45^{\circ}(0.3 \mathrm{~mm}), n^{20} \mathrm{D} 1.4418$, and $0.77 \mathrm{~g}(23 \%)$ of starting material.

By following procedure A, from $1.03 \mathrm{~g}(3.50 \mathrm{mmol})$ of $1,2-$ di(o-tolyl)perhydropyridazine-3,6-dione, 30 ml of THF, and 3.1 ml of 11.4 N borane in THF (35.5 mmol of hydride), there was obtained $0.79 \mathrm{~g}(84 \%)$ of $\mathbf{N}, \mathbf{N}^{\prime}$-di(o-tolyl)-1,4-diaminobutane: $\mathrm{mp} 45^{\circ}$; ir (neat) 3420 (NH) and $2925 \mathrm{~cm}^{-1}(\mathrm{CH})$; nmr (CDCl_{3}) 1.2 ($\mathrm{s}, 2, \mathrm{NH}$), $1.7\left(\mathrm{~m}, 4, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right), 2.1\left(\mathrm{~s}, 6, \mathrm{CH}_{3}\right)$, $3.1\left(\mathrm{~m}, 4, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right)$, and $6.8 \mathrm{ppm}(\mathrm{m}, 8$, aromatic H$)$.

The dihydrochloride salt, mp 223°, was prepared by the usual method. ${ }^{12}$

Anal. Caled for $\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{Cl}_{2}: \mathrm{C}, 63.34 ; \mathrm{H}, 7.62 ; \mathrm{N}, 8.21$; $\mathrm{Cl}, 20.82$. Found: C, $63.08 ; \mathrm{H}, 7.64 ; \mathrm{N}, 8.28 ; \mathrm{Cl}, 20.71$.
N, N^{\prime}-Dipropyl-1,4-butanediamine (74%) was prepared: bp $54-60^{\circ}(0.27 \mathrm{~mm}) ; n^{20} \mathrm{D} 1.4469$; ir (neat) $3280(\mathrm{NH})$ and 2860 $\mathrm{cm}^{-1}(\mathrm{CH}) ; \mathrm{nmr}\left(\mathrm{CCl}_{4}\right) 0.68(\mathrm{~s}, 2, \mathrm{NH}), 0.92\left(\mathrm{t}, 6, \mathrm{CH}_{3}\right), 1.50$ $\left[\mathrm{m}, 4, \mathrm{NCH}_{2}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CH}_{2} \mathrm{~N}\right], 1.55\left(\mathrm{~m}, 4, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 2.58[\mathrm{t}, 4$, $\left.\mathrm{NCH}_{2}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CH}_{2} \mathrm{~N}\right]$, and $2.60 \mathrm{ppm}\left(\mathrm{t}, 4, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$.

The dipicrate salt was prepared, mp $210-212^{\circ}$ dec after recrystallization from 95% ethanol.

Anal. Caled for $\mathrm{C}_{22} \mathrm{H}_{30} \mathrm{~N}_{8} \mathrm{O}_{14}$: $\mathrm{C}, 41.90 ; \mathrm{H}, 4.76 ; \mathrm{N}, 17.78$. Found: C, 42.03 ; H, $5.01 ; \mathrm{N}, 17.96$.
$\mathrm{N}, \mathrm{N}^{\prime}-\mathrm{Di}($ sec-butyl)-1,4-butanediamine (75%) was prepared: bp $54-60^{\circ}(0.12 \mathrm{~mm})$; $n^{20} \mathrm{D} 1.4487$; ir (neat) 3280 (NH) and $2975 \mathrm{~cm}^{-1}(\mathrm{CH}) ; \mathrm{nmr}\left(\mathrm{CCl}_{4}\right) 0.79(\mathrm{~s}, 2, \mathrm{NH}), 0.95[\mathrm{~d}, 6, \mathrm{CH}$ $\left.\left(\mathrm{CH}_{3}\right)\right], 0.99\left(\mathrm{t}, 6, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.4\left(\mathrm{~m}, \mathrm{x}, \mathrm{CH}_{2}\right), 2.57\left(\mathrm{t}, 4, \mathrm{NCH}_{2}\right)$, and $2.6 \mathrm{ppm}(\mathrm{m}, 2, \mathrm{CH})$.

The dipicrate salt was prepared, $\operatorname{mp} 215-216^{\circ}$ dec.
Anal. Caled for $\mathrm{C}_{24} \mathrm{H}_{34} \mathrm{~N}_{8} \mathrm{O}_{14}$: C, 43.77; H, 5.17; N, 17.02. Found: C, 44.02; H, $5.45 ; \mathrm{N}, 16.80$.
$\mathrm{N}, \mathrm{N}^{\prime}-\mathrm{Di}(0$-tolyl $)-1,4$-butanediamine (84%) was prepared: mp 45°; ir (neat) $3420(\mathrm{NH})$ and $2925 \mathrm{~cm}^{-1}(\mathrm{CH}) ; \mathrm{nmr}\left(\mathrm{CDCl}_{3}\right)$ $1.2(\mathrm{~s}, 2, \mathrm{NH}), 1.7\left[\mathrm{~m}, 4,\left(\mathrm{CH}_{2}\right)_{2}\right], 2.1\left(\mathrm{~s}, 6, \mathrm{CH}_{3}\right), 3.1(\mathrm{~m}, 4$, $\left.\mathrm{NCH}_{2}\right)$, and $6.8 \mathrm{ppm}(\mathrm{m}, 8$, aromatic H$)$.
The dihydrochloride salt was prepared, $\mathrm{mp} 223^{\circ}$ (from CH_{3} OH).

Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{Cl}_{2}: \mathrm{C}, 63.34 ; \mathrm{H}, 7.62 ; \mathrm{N}, 8.21$; $\mathrm{Cl}, 20.82$. Found: C, $63.08 ; \mathrm{H}, 7.64 ; \mathrm{N}, 8.28 ; \mathrm{Cl}, 20.71$.
N, N^{\prime}-Dibutyl-1,4-butanediamine (80%) was prepared: mp $64-66^{\circ}$; ir (melt) $3300(\mathrm{NH})$ and $2975 \mathrm{~cm}^{-1}(\mathrm{CH}) ; \mathrm{nmr}\left(\mathrm{CCl}_{4}\right)$ $0.81(\mathrm{~s}, 2, \mathrm{NH}), 0.93\left(\mathrm{t}, 6, \mathrm{CH}_{3}\right), 1.4\left\{\mathrm{~m}, 12,\left[\mathrm{CH}_{8}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CH}_{2}\right]_{2}-\right.$ $\left.\mathrm{NHCH}_{2}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CH}_{2} \mathrm{NH}\right\}$, and $2.58 \mathrm{ppm}\left(\mathrm{t}, 8, \mathrm{NCH}_{2}\right)$.

The dipicrate salt was prepared, mp $213-214^{\circ}$ dec.
Anal. Calcd for $\mathrm{C}_{24} \mathrm{H}_{34} \mathrm{~N}_{8} \mathrm{O}_{14}$: C, $43.77 ; \mathrm{H}, 5.17 ; \mathrm{N}, 17.02$. Found: C, 44.02; H, 5.32; N, 17.23.

1,2-Dipropylhydrazine (5).-The following experiment is typical of the procedure employed for the reduction of $1,2-$ diacylhydrazines. To $4.32 \mathrm{~g}(30.0 \mathrm{mmol})$ of 1,2-dipropionylhydrazine in 240 ml of diglyme at 0° was added 44 ml of 6.25 N borane in THF (274 mmol of hydride). The reaction mixture was stirred at $0-5^{\circ}$ for 15 min , allowed to attain room temperature, and then heated to 134° for 24 hr . Removing THF and diglyme in vacuo, hydrolyzing the residue with 30 ml of 10% hydrochloric acid at 0°, and then refluxing for 1 hr was followed by basifying with sodium hydroxide. Extracting the reaction mixture with ether, drying the extract $\left(\mathrm{MgSO}_{4}\right)$, filtering, removing ether, and distilling the residue gave $2.27 \mathrm{~g}(65 \%)$ of 1,2-dipropylhydrazine: bp $149-151^{\circ}, n^{20} \mathrm{D} 1.4297$ (lit. ${ }^{13} \mathrm{bp} 149-$ 150°; $n^{20} \mathrm{D} 1.4287$); ir (neat) $3320 \mathrm{~cm}^{-1}(\mathrm{NH}) ; \mathrm{nmr}\left(\mathrm{CCl}_{4}\right) 0.95$ ($\mathrm{t}, 6, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$), 1.6 ($\mathrm{m}, 4, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$), 3.7 ($\mathrm{t}, 4, \mathrm{CH}_{2} \mathrm{CH}_{2}-$ CH_{3}), and $3.7 \mathrm{ppm}(\mathrm{s}, 2, \mathrm{NH})$.

1,2-Dibutylhydrazine (6).-From 1,2-dibutyrylhydrazine (5.16 $\mathrm{g}, 30.0 \mathrm{mmol}$), diglyme (240 ml), and 44 ml of 6.25 N borane in THF (274 mmol of hydride), there was obtained $2.12 \mathrm{~g}(49 \%)$ of 1,2-dibutylhydrazine: bp 190-193 ${ }^{\circ}$; n^{20} D 1.4317 (lit. ${ }^{14}$ bp 192$194^{\circ} ; n^{20} \mathrm{D}$ 1.4346); $\mathrm{nmr}\left(\mathrm{CCl}_{4}\right) 0.95$ (t, 6, CH_{8}), 1.4 (m, 8, $\left.\mathrm{CH}_{2}\right), 3.6\left(\mathrm{t}, 2, \mathrm{NCH}_{2}\right)$, and $3.7 \mathrm{ppm}(\mathrm{s}, 2, \mathrm{NH})$.

1,2-Dicyclohexylmethylhydrazine (9).-From 2.38 g (10 mmol) of 1-cyclohexanoyl-2-cyclohexylmethylhydrazine (8) dissolved in 23 ml of diglyme and 4.2 ml of 12 N borane in THF at 142°, there were obtained $1.21 \mathrm{~g}(54 \%)$ of 1,2 -dicyclohexylmethyl-

[^3]hydrazine (9): bp 112-114 (0.2 mm); [lit. ${ }^{15}$ bp 112-114 ${ }^{\circ}(0.2$ $\mathrm{mm})]$; $n^{20} \mathrm{D}$ 1.5010; ir (neat) $3320(\mathrm{NH})$ and $2940 \mathrm{~cm}^{-1}(\mathrm{CH})$; nmr $\left(\mathrm{CCl}_{4}\right)$ 1.1-1.6 (m, 22, $\left.\mathrm{C}_{6} \mathrm{H}_{11}\right), 2.76\left(\mathrm{~d}, 4, \mathrm{CH}_{2}\right)$, and 4.3 $\mathrm{ppm}(\mathrm{s}, 2, \mathrm{NH})$.

Cyclohexylmethylamine ($0.13 \mathrm{~g}, 6 \%$) was also obtained: bp $28-30^{\circ}(2 \mathrm{~mm}) ; n^{20} \mathrm{D} 1.4659$ (lit..$\left.^{16} \mathrm{bp} 163.5^{\circ} ; n^{18} \mathrm{D} 1.4664\right)$; ir (neat) $3300 \mathrm{~cm}^{-1}(\mathrm{NH})$; $\mathrm{nmr}\left(\mathrm{CDCl}_{3}\right) 1.2-1.6(\mathrm{~m}, 11$, ring H$)$, $2.4\left(\mathrm{~m}, 2, \mathrm{CH}_{2}\right)$, and $2.45 \mathrm{ppm}\left(\mathrm{m}, 2, \mathrm{NH}_{2}\right)$.

1-Cyclohexanoyl-2-cyclohexylmethylhydrazine (8).-The procedure was similar to that employed for the preparation of 5 except that $7.56 \mathrm{~g}(30.0 \mathrm{mmol})$ of 1,2-dicyclohexanoylhydrazine, 125 ml of diglyme, and 22.8 ml of 12 N borane in THF (273.6 mmol of hydride) were employed, and that the reaction temperature was 129°. After the usual work-up the ether was removed in vacuo and 20 ml of hexane was added to the residue. Cooling to -78° and filtering gave $3.93 \mathrm{~g}(55 \%)$ of 1 -cyclohexanoyl-2cyclohexylmethylhydrazine (8): $\mathrm{mp} 97^{\circ}$; ir (neat) $3300(\mathrm{NH})$, $2920(\mathrm{CH})$, and $1630 \mathrm{~cm}^{-1}(\mathrm{C}=0)$; nmr ($\mathrm{DMSO}-d_{6}$) 0.8-1.8 $\left(\mathrm{m}, 22, \mathrm{C}_{6} \mathrm{H}_{11}\right), 1.9\left(\mathrm{~m}, 1, \mathrm{CH}_{2} \mathrm{NH}\right), 2.45\left(\mathrm{~s}, 2, \mathrm{CH}_{2} \mathrm{NH}\right)$, and $3.35 \mathrm{ppm}(\mathrm{m}, 1, \mathrm{O}=\mathrm{C}-\mathrm{NH})$.

Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{2}: \mathrm{C}, 70.54 ; \mathrm{H}, 10.99 ; \mathrm{N}, 11.75$. Found: C, 70.40; H, 11.24; N, 11.77.

Removing hexane from the filtrate and distilling gave 0.50 g (7%) of 9 .

1-Benzoyl-2-benzylhydrazine (7).-The procedure was similar to that described for the preparation of 1-cyclohexanoyl-2-cyclohexylmethylhydrazine (8), except that the reaction was carried out at 149° for 24 hr . After evaporation of the ether extract, there was obtained 1-benzoyl-2-benzylhydrazine (69%): mp $110^{\circ}\left(\mathrm{H}_{2} \mathrm{O}\right)$; ir (neat) $3300(\mathrm{NH})$ and $1640 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{O})$; nmr $\left(\mathrm{CDCl}_{3}\right) 4.0\left(\mathrm{~m}, 4, \mathrm{CH}_{2} \mathrm{NHNHC}=\mathrm{O}\right)$, and $7.4 \mathrm{ppm}(\mathrm{m}, 10$, aromatic \mathbf{H}).

Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}: \mathrm{C}, 74.31 ; \mathrm{H}, 6.24 ; \mathrm{N}, 12.38$. Found: C, 74.05; H, 6.01; N, 12.28.

1-(p-Methoxybenzoyl)-2-(p-methoxybenzyl)hydrazine (54%) was obtained: $\operatorname{mp} 135^{\circ}(50 \%$ aqueous EtOH$)$; ir (KBr) 3220 (NH) and $1610 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{O})$; nmr (DMSO- d_{6}) $1.9\left(\mathrm{~d}, 6, \mathrm{OCH}_{3}\right)$, $3.4\left(\mathrm{~m}, 2, \mathrm{NHCH}_{2}\right), 3.9\left[\mathrm{~m}, 2,(\mathrm{NH})_{2}\right]$, and $7.2 \mathrm{ppm}(\mathrm{m}, 8$, aromatic H).

Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{3}$: $\mathrm{C}, 67.11 ; \mathrm{H}, 6.34 ; \mathrm{N}, 9.78$. Found: C, $67.0 \overline{5} ; \mathrm{H}, 6.29 ; \mathrm{N}, 9.84$.

Acidification of the aqueous layer with 10% hydrochloric acid gave on filtration 34% of starting material.

1 -(p-Chlorobenzoyl)-2-(p-chlorobenzyl) hydrazine (42%) was obtained: $\mathrm{mp} 138^{\circ}$ (40% aqueous EtOH); ir (Nujol) 3280 (NH) and $1640 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{O})$; nmr (DMSO-d $\left.\mathrm{d}_{6}\right) 3.2\left(\mathrm{~s}, 2, \mathrm{CH}_{2} \mathrm{NH}\right)$, $3.9\left[\mathrm{~m}, 2,(\mathrm{NH})_{2}\right], 7.3\left(\mathrm{~s}, 4, \mathrm{ClC}_{6} \mathrm{H}_{4} \mathrm{CO}\right)$, and $7.6 \mathrm{ppm}(\mathrm{q}, 4$, $\mathrm{ClC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2}$).

Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{OCl}_{2}$: C, $56.95 ; \mathrm{H}, 4.07 ; \mathrm{N}, 9.49$; $\mathrm{Cl}, 24.07$. Found: C, 57.08 ; $\mathrm{H}, 4.14 ; \mathrm{N}, 9.36 ; \mathrm{Cl}, 23.97$.
The usual work-up of the aqueous lager afforded 40% of starting material.

1,2-Dipropyl-1,2-dimethylhydrazine (10).-The following experiment is typical of the procedure employed for the preparation of tetrasubstituted hydrazines. To $5.16 \mathrm{~g}(30.0 \mathrm{mmol})$ of $1,2-$ dipropionyl-1,2-dimethylhydrazine in 200 ml of THF at 0° was added by means of a syringe 24 ml of $6.2 . \mathrm{N}$ borane in THF (150 mmol of hydride). The reaction mixture was stirred at $0-5^{\circ}$ for 15 min , allowed to attain room temperature, and then refluxed for 24 hr . The reaction mixture was recooled to 0°, hydrolyzed by adding dropwise 30 ml of 10% hydrochloric acid, and then refluxed for 1 hr . Basifying with solid sodium hydroxide, extracting with ether, drying the extract (MgSO_{4}), removing ether, and distilling the residue gave two fractions.

One fraction was 1,2 -dipropyl-1,2-dimethylhydrazine (10, $3.53 \mathrm{~g}, 82 \%$): bp 64-65 ${ }^{\circ}(40 \mathrm{~mm}) ; n^{20} \mathrm{D} 1.4267$; ir (neat) 2951 $\mathrm{cm}^{-1}(\mathrm{CH}) ; \mathrm{nmr}\left(\mathrm{CCl}_{4}\right) 0.89\left(\mathrm{t}, 6, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.46(\mathrm{~m}, 4$, $\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$), $2.39\left(\mathrm{t}, 4, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right.$), and 2.21 ppm ($\mathrm{s}, 6$, NCH_{3}).

Anal. Calcd for $\mathrm{C}_{8} \mathrm{H}_{20} \mathrm{~N}_{2}$: $\mathrm{C}, 66.60 ; \mathrm{H}, 13.98 ; \mathrm{N}, 19.42$. Found: C, $66.60 ; \mathrm{H}, 13.94 ; \mathrm{N}, 19.62$.

The other fraction was 1-propionyl-2-propyl-1,2-dimethylhydrazine ($11,0.68 \mathrm{~g}, 14 \%$): bp $92-94^{\circ}(40 \mathrm{~mm}) ; n^{20_{\mathrm{D}}} 1.4505$; ir (neat) $29.51(\mathrm{CH})$ and $1653 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{O})$; $\mathrm{nmr}\left(\mathrm{CCl}_{4}\right) 0.96$ ($\mathrm{t}, 3, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$), $1.03\left(\mathrm{t}, 3, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{C}=\mathrm{O}\right), 1.45(\mathrm{~m}, 2$,

[^4]$\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$), $2.55\left(\mathrm{~s}, 3, \mathrm{NCH}_{3}\right), 2.82\left(\mathrm{~s}, 3, \mathrm{NCH}_{3}\right), 2.42$ (t , $2, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{8}$), and $2.58 \mathrm{ppm}\left(\mathrm{q}, 2, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{C}=\mathrm{O}\right)$.

Anal. Calcd for $\mathrm{C}_{8} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}$: C, 60.72; H, 11.47; N, 17.70. Found: C, 60.86; H, 11.50; N, 17.90.

1,2-Dipropyl-1,2-diethylhydrazine.-By following the usual procedure, there was obtained 1,2-dipropyl-1,2-diethylhydrazine $(82 \%):$ bp $74-76^{\circ}(10 \mathrm{~mm}) ; n^{20} \mathrm{D} 1.4322 ; \mathrm{nmr}\left(\mathrm{CCl}_{4}\right) 0.88[\mathrm{t}$, $6, \mathrm{~N}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CH}_{3}$, $1.0\left(\mathrm{t}, 6, \mathrm{NCH}_{2} \mathrm{CH}_{3}\right), 1.38\left(\mathrm{~m}, 4, \mathrm{NCH}_{2-}\right.$ $\mathrm{CH}_{2} \mathrm{CH}_{3}$), $2.43\left(\mathrm{t}, 4, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$, and $2.40 \mathrm{ppm}(\mathrm{q}, 4$, $\mathrm{NCH}_{2} \mathrm{CH}_{3}$).
Anal. Caled for $\mathrm{C}_{10} \mathrm{H}_{24} \mathrm{~N}_{2}$: $\mathrm{C}, 69.70 ; \mathrm{H}, 14.04 ; \mathrm{N}, 16.26$. Found: C, 69.81; H, 14.26; N, 16.30 .

When the reaction mixture was refluxed during the reduction only for 2 hr instead of 24 hr , there was also obtained 1-propionyl-2-propyl-1,2-diethylhydrazine (10%): bp $58^{\circ}(0.31 \mathrm{~mm}) ; n^{20} \mathrm{D}$ 1.4533; ir (neat) $2990(\mathrm{CH})$ and $1653 \mathrm{~cm}^{-1}(\mathrm{C}=0)$; $\mathrm{nmr}\left(\mathrm{CCl}_{4}\right)$ $0.90\left[\mathrm{t}, 3, \mathrm{~N}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CH}_{3}\right], 1.0\left(\mathrm{t}, 3, \mathrm{O}=\mathrm{CNCH}_{2} \mathrm{CH}_{3}\right), 1.05(\mathrm{t}, 3$, $\mathrm{O}=\mathrm{CCH}_{2} \mathrm{CH}_{3}$), 1.38 (m, 2, $\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{8}$), $2.40\left(\mathrm{q}, 2, \mathrm{NCH}_{2}-\right.$ CH_{3}), 2.50 (t, 2, $\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$), 2.70 (q, 2, $\mathrm{OCCH}_{2} \mathrm{CH}_{3}$), and $3.23 \mathrm{ppm}\left(\mathrm{q}, 2, \mathrm{OCNCH}_{2} \mathrm{CH}_{3}\right.$).

Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}$: $\mathrm{C}, 64.47 ; \mathrm{H}, 11.90 ; \mathrm{N}, 15.04$. Found: C, 64.45; H, 12.12; N, 15.07.

1,2-Diethyl-1,2-dimethylhydrazine.-By following the typical procedure, there was obtained from $4.32 \mathrm{~g}(30 \mathrm{mmol})$ of $1,2-$ diacetyl-1,2-dimethylhydrazine 2.61 g (75%) of 1,2-diethyl-1,2dimethylhydrazine: bp $92-94^{\circ} ; n^{20}$ D 1.4091 [lit. ${ }^{4}$ bp $93-94^{\circ}$ (752 mm); $n^{27} \mathrm{D}$ 1.4121]; ir (neat) 2950 and $2800 \mathrm{~cm}^{-1}(\mathrm{CH}$); $\mathrm{nmr}\left(\mathrm{CCl}_{4}\right) 1.02\left(\mathrm{t}, 6, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 2.22\left(\mathrm{~s}, 6, \mathrm{NCH}_{3}\right)$, and 2.48 $\operatorname{ppm}\left(\mathrm{q}, 4, \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$.

When the reduction mixture was refluxed for only 2 hr instead of 24 hr , the major product was identified by glpe analysis as the half-reduced 1-acetyl-2-ethyl-1,2-dimethylhydrazine (46\% yield): n^{20} p 1.4423 ; ir (neat) $2960,2850\left(\mathrm{CH}\right.$), and $1665 \mathrm{~cm}^{-1}$ (CO); nmr $\left(\mathrm{CCl}_{4}\right) 1.01$ ($\mathrm{t}, 3, \mathrm{CH}_{3} \mathrm{CH}_{2}$), 2.03 ($\mathrm{s}, 3, \mathrm{CH}_{3} \mathrm{CO}$), $2.55\left(\mathrm{~s}, 3, \mathrm{NCH}_{3}\right), 2.7\left(\mathrm{q}, 2, \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$, and $2.78 \mathrm{ppm}(\mathrm{s}, 3$, $\mathrm{H}_{3} \mathrm{CNCO}$).

Anal. Caled for $\mathrm{C}_{6} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}: \mathrm{C}, 55.35 ; \mathrm{H}, 10.84 ; \mathrm{N}, 21.52$. Found: C, $55.27 ;$ H, 10.91 ; N, 21.26 .

Tetraethylhydrazine and 1-Acetyl-1,2,2-triethylhydrazine.From 1,2-diacetyl-1,2-diethylhydrazine, there were obtained
tetraethylhydrazine (70%), bp $56-58^{\circ}(46 \mathrm{~mm})$ [lit. ${ }^{17} \mathrm{bp} 52-53^{\circ}$ (42 mm)], $n^{20} \mathrm{D} 1.4215$, and 1-acetyl-1,2,2-triethylhydrazine (8%): bp $34-36^{\circ}(0.33 \mathrm{~mm})$; $n^{20} \mathrm{D} 1.4498$; ir (neat) $2950(\mathrm{CH})$ and $1653 \mathrm{~cm}^{-1}(\mathrm{CO}) ; \mathrm{nmr}\left(\mathrm{CCl}_{4}\right) 1.02\left[\mathrm{t}, 6, \mathrm{~N}\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)_{2}\right], 1.17(\mathrm{t}$, $\left.3, \mathrm{O}=\mathrm{CNCH}_{2} \mathrm{CH}_{3}\right), 2.0\left(\mathrm{~s}, 3, \mathrm{CH}_{3} \mathrm{C}=\mathrm{O}\right), 2.72\left[\mathrm{q}, 4, \mathrm{~N}\left(\mathrm{CH}_{2}-\right.\right.$ $\left.\mathrm{CH}_{3}\right)_{2}$, and $3.20 \mathrm{ppm}\left(\mathrm{q}, 2, \mathrm{O}=\mathrm{CNCH}_{2} \mathrm{CH}_{3}\right)$.
Anal. Caled for $\mathrm{C}_{8} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}: \mathrm{C}, 60.72 ; \mathrm{H}, 11.47 ; \mathrm{N}, 17.70$. Found: C, 60.48; H, 11.61 ; N, 17.86 .
1,2-Dibenzyl-1,2-dimethylhydrazine (13).-From 1,2-diben-zoyl-1,2 dimethylhydrazine was obtained $13(60 \%)$: bp 110$112^{\circ}(0.1 \mathrm{~mm}) ; n^{20} \mathrm{D} 1.5566$ [lit. ${ }^{4}$ bp $118-120^{\circ}(0.15 \mathrm{~mm}), n^{20} \mathrm{D}$ $1.5538] ; \mathrm{nmr}\left(\mathrm{CCl}_{4}\right) 2.3\left[\mathrm{~s}, 6, \mathrm{~N}\left(\mathrm{CH}_{3}\right)_{2}\right], 3.7\left[\mathrm{~s}, 4, \mathrm{~N}\left(\mathrm{CH}_{2}\right)_{2}\right]$, and 7.3 ppm ($\mathrm{s}, 10$, aromatic H). N-Methylbenzylamine (28%) was also obtained: bp $50-52^{\circ}(3 \mathrm{~mm})$; $n^{20} \mathrm{D} 1.5242$; ir (neat) 3350 $\mathrm{cm}^{-1}(\mathrm{NH}) ; \mathrm{nmr}\left(\mathrm{CCl}_{4}\right) 1.9(\mathrm{~s}, 1, \mathrm{NH}), 2.3\left(\mathrm{~s}, 3, \mathrm{NCH}_{3}\right), 3.7$ ($\mathrm{s}, 2, \mathrm{NCH}_{2}$), and $7.3 \mathrm{ppm}(\mathrm{s}, 5$, aromatic H$)$.

Registry No.—Diborane, 19287-45-7; 2a, 23359-97-9; 2b, 23346-48-7; 2c, 23346-49-8; 2d, 23346-50-1; 2f, 23346-51-2; 2g, 505-19-1; 3a, 23346-53-4; 3b, 23346-54-5; 3c, 23346-55-6; 3d, 23346-56-7; 4a, 23346-57-8; 4a dipicrate, $23346-58-9$; 4c, 23346-59-0; 4c dipicrate, 23359-98-0; 4d, 19435-69-9; 4d dipicrate, 23346-61-4; 4f, 23346-62-5; 4f dihydrochloride, 23346-63-6; 7, $1215-52-7$; 8, 23337-87-3; 10, 23337-88-4; 11, 23337-89-5; 1-(p-methoxybenzoyl)-2-(p-methoxybenzyl)hydrazine, 23359-99-1; 1-(p-chlorobenzoyl)-2-(p-chlorobenzyl)hydrazine, 23337-90-8; 1,2-dipropyl-1,2-diethylhydrazine, 23337-91-9; 1-propionyl-2-propyl-1,2diethylhydrazine, 23337-92-0; 1,2-diethyl-1,2-dimethylhydrazine, 23337-93-1; 1-acetyl-1,2,2-triethylhydrazine, 23389-69-7.

Acknowledgment.-We thank the Purdue Research Foundation for financial support of part of this work.
(17) O. Westphal and M. Eucken, Chem. Ber., 76B, 1137 (1943).

Hydroxamic Acids and N-Hydroxyimides Related to Pyridine, Pyrazine, and Quinoxaline

Charles D. Hurd and Victor G. Bethune ${ }^{1}$
Department of Chemistry, Northwestern University, Evanston, Illinois

Received January 28,1969

Abstract

The o-carboxyhydroxamic acids $1 \mathrm{~b}, 2 \mathrm{~b}, 8 \mathrm{a}$, and 9 a were prepared and subjected to Lossen rearrangement. In an inert medium, the isocyanate intermediate from Ib gives the cyclic anhydride 3 , which reacts readily with water or methanol. In the presence of methanol, o-amino esters were obtained in all cases, indicating that cyclization of the isocyanate is more rapid than its reaction with methanol. Rearrangement of N -(benzoyloxy)quinolinimide 12 b and N -(benzoyloxy) cinchomeronimide 14 b gave amino acids 4 a and 15 , respectively.

In this study we have extended our earlier findings ${ }^{2}$ on the Lossen rearrangement of o-carboxyhydroxamic salts. The 3 -carboxyhydroxamic acids $\mathbf{1 b}$ and $\mathbf{2 b}$ were obtained from the corresponding methyl esters la and 2a by reaction with hydroxylamine. The esters were obtained by treatment of quinolinic and cinchomeronic anhydrides, respectively, with methanol. We were unable to isolate the isomeric methyl 2-carboxynicotinate from brief heating of quinolinic anhydride in methanol, ${ }^{3}$ but both isomeric benzyl esters were obtained with benzyl alcohol.

The benzoyl hydroxamates 1c and 2c were prepared from the acids with benzoyl chloride, and were con-
(1) Abbott Fellow, 1962-1963; Lubrizol Fellow, 1963-1965.
(2) C. D. Hurd, C. M. Buess, and L. Bauer, J. Org. Chem. 17, 865 (1952); 19, 1140 (1954).
(3) J. Kenyon and K. Thaker, J. Chem. Soc., 2531 (1957).

la, $\mathrm{X}=\mathrm{OCH}_{3}$ b, $\mathrm{X}=\mathrm{NHOH}$ c, $\mathrm{X}=\mathrm{NHOCOC}_{6} \mathrm{H}_{5}$

2a, $\mathrm{X}=\mathrm{OCH}_{3}$ b, $\mathrm{X}=\mathrm{NHOH}$ c, $\mathrm{X}=\mathrm{NHOCOC}_{6} \mathrm{H}_{5}$
verted into the monosodium salts for rearrangement. On heating in toluene the salts gave mixtures of the cyclic anhydrides 3^{4} and 6 and the amino acids $4 a$ and 7a. The aminonicotinic acid presumably arose from traces of water; a sample of the salt of 1 c that had been stored for a week gave only $\mathbf{4 a}(76 \%)$. The rearrange-
(4) An alternative preparation of $\mathbf{3}$ by $\mathrm{Pb}(\mathrm{OAc})_{4}$ oxidation of 2-carbamylnicotinic acid has recently been described by A. L. J. Beckwith and R. J. Hickman, ibid., C, 2756 (1969).

[^0]: (1) H. Feuer, E. P. Rosenquist, and F. Brown, Jr., Israel J. Chem., 6, 587 (1968).
 (2) H. Stetter and H. Spangenberger, Chem. Ber., 91, 1982 (1958).
 (3) E. Hedaya, R, L. Hinman, V. Schomaker, S. Theodoropulos, and L. M. Kyle, J. Amer. Chem. Soc., 89, 4875 (1967).

[^1]: (5) H. C. Brown and B. C. Subba Rao, J. Amer. Chem. Soc., 81, 6428 (1959).
 (6) H. Feuer and C. Savides, ibid., 81, 5826 (1959).

[^2]: (7) P, Baranger and J. Levisalles, Bull. Soc. Chim. Fr., 704 (1957).
 (8) K. Alder, H. Niklas, R. Aumaller, and B. Olsen, Justus Liebigs Ann Chem., 685, 81 (1954).
 (9) Only acidic hydrolysis led to pure product. When the hydrolysis was performed in basic medium, the reaction product was contaminated with boron-containing material.
 (10) R. G. Shepherd and R. G. Wilkinson, J. Med. Pharm. Chem., 5, 823 (1962).
 (11) A. A. Ryabinin and E. M. Il'ina, J. Appl. Chem. USSR, 26, 369 (1953).
 (12) R. L. Shriner, R. C. Fuson, and D. Y. Curtin, "The Systematic Identification of Organic Compounds," 4th ed, John Wiley \& Sons, Inc., New York, N. Y., 1960, p 222.

[^3]: (13) R. Renaud and L. C. Leitch, Can. J. Chem., 32, 545 (1954).
 (14) R. Stolle, Chem. Ber., 34, 682 (1901).

[^4]: (15) P. G. Ugryumov, J. Gen. Chem. USSR, 10, 1985 (1940); Chem. Abstr., 35, 4361 ${ }^{3}$ (1941).
 (16) J. Gutt, Chem. Ber., 40, 2061 (1907).

